\(\int \frac {d+e x+f x^2}{(a+b x^2+c x^4)^2} \, dx\) [37]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 368 \[ \int \frac {d+e x+f x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=-\frac {e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (b d-2 a f+\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (b d-2 a f-\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {2 c e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \]

[Out]

-1/2*e*(2*c*x^2+b)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/2*x*(b^2*d-2*a*c*d-a*b*f+c*(-2*a*f+b*d)*x^2)/a/(-4*a*c+b^2)/
(c*x^4+b*x^2+a)+2*c*e*arctanh((2*c*x^2+b)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(3/2)+1/4*arctan(x*2^(1/2)*c^(1/2)/
(b-(-4*a*c+b^2)^(1/2))^(1/2))*c^(1/2)*(b*d-2*a*f+(4*a*b*f-12*a*c*d+b^2*d)/(-4*a*c+b^2)^(1/2))/a/(-4*a*c+b^2)*2
^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+1/4*arctan(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*c^(1/2)*(b*d-2*
a*f+(-4*a*b*f+12*a*c*d-b^2*d)/(-4*a*c+b^2)^(1/2))/a/(-4*a*c+b^2)*2^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 368, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {1687, 1192, 1180, 211, 12, 1121, 628, 632, 212} \[ \int \frac {d+e x+f x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {\sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right ) \left (\frac {4 a b f-12 a c d+b^2 d}{\sqrt {b^2-4 a c}}-2 a f+b d\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right ) \left (-\frac {4 a b f-12 a c d+b^2 d}{\sqrt {b^2-4 a c}}-2 a f+b d\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {\sqrt {b^2-4 a c}+b}}+\frac {2 c e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac {x \left (c x^2 (b d-2 a f)-a b f-2 a c d+b^2 d\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )} \]

[In]

Int[(d + e*x + f*x^2)/(a + b*x^2 + c*x^4)^2,x]

[Out]

-1/2*(e*(b + 2*c*x^2))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (x*(b^2*d - 2*a*c*d - a*b*f + c*(b*d - 2*a*f)*x^2
))/(2*a*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (Sqrt[c]*(b*d - 2*a*f + (b^2*d - 12*a*c*d + 4*a*b*f)/Sqrt[b^2 - 4
*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*(b^2 - 4*a*c)*Sqrt[b - Sqrt[b^2 -
 4*a*c]]) + (Sqrt[c]*(b*d - 2*a*f - (b^2*d - 12*a*c*d + 4*a*b*f)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)
/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*(b^2 - 4*a*c)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + (2*c*e*ArcTanh[(b + 2
*c*x^2)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(3/2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1
)*(b^2 - 4*a*c))), x] - Dist[2*c*((2*p + 3)/((p + 1)*(b^2 - 4*a*c))), Int[(a + b*x + c*x^2)^(p + 1), x], x] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[4*p]

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1121

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1192

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*(a*b*e - d*(b^2 - 2*a
*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1687

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps \begin{align*} \text {integral}& = \int \frac {e x}{\left (a+b x^2+c x^4\right )^2} \, dx+\int \frac {d+f x^2}{\left (a+b x^2+c x^4\right )^2} \, dx \\ & = \frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int \frac {-b^2 d+6 a c d-a b f-c (b d-2 a f) x^2}{a+b x^2+c x^4} \, dx}{2 a \left (b^2-4 a c\right )}+e \int \frac {x}{\left (a+b x^2+c x^4\right )^2} \, dx \\ & = \frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {1}{2} e \text {Subst}\left (\int \frac {1}{\left (a+b x+c x^2\right )^2} \, dx,x,x^2\right )+\frac {\left (c \left (b d-2 a f-\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{4 a \left (b^2-4 a c\right )}+\frac {\left (c \left (b d-2 a f+\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{4 a \left (b^2-4 a c\right )} \\ & = -\frac {e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (b d-2 a f+\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (b d-2 a f-\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {(c e) \text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^2\right )}{b^2-4 a c} \\ & = -\frac {e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (b d-2 a f+\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (b d-2 a f-\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {(2 c e) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{b^2-4 a c} \\ & = -\frac {e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (b d-2 a f+\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (b d-2 a f-\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {2 c e \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.72 (sec) , antiderivative size = 398, normalized size of antiderivative = 1.08 \[ \int \frac {d+e x+f x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {1}{4} \left (\frac {2 a b (e+f x)-2 b d x \left (b+c x^2\right )+4 a c x (d+x (e+f x))}{a \left (-b^2+4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {2} \sqrt {c} \left (b^2 d+b \left (\sqrt {b^2-4 a c} d+4 a f\right )-2 a \left (6 c d+\sqrt {b^2-4 a c} f\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \sqrt {c} \left (-b^2 d+12 a c d+b \sqrt {b^2-4 a c} d-4 a b f-2 a \sqrt {b^2-4 a c} f\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {4 c e \log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac {4 c e \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}\right ) \]

[In]

Integrate[(d + e*x + f*x^2)/(a + b*x^2 + c*x^4)^2,x]

[Out]

((2*a*b*(e + f*x) - 2*b*d*x*(b + c*x^2) + 4*a*c*x*(d + x*(e + f*x)))/(a*(-b^2 + 4*a*c)*(a + b*x^2 + c*x^4)) +
(Sqrt[2]*Sqrt[c]*(b^2*d + b*(Sqrt[b^2 - 4*a*c]*d + 4*a*f) - 2*a*(6*c*d + Sqrt[b^2 - 4*a*c]*f))*ArcTan[(Sqrt[2]
*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*Sqrt[
c]*(-(b^2*d) + 12*a*c*d + b*Sqrt[b^2 - 4*a*c]*d - 4*a*b*f - 2*a*Sqrt[b^2 - 4*a*c]*f)*ArcTan[(Sqrt[2]*Sqrt[c]*x
)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - (4*c*e*Log[-b + Sqrt[b^2
 - 4*a*c] - 2*c*x^2])/(b^2 - 4*a*c)^(3/2) + (4*c*e*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/(b^2 - 4*a*c)^(3/2))/
4

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.26 (sec) , antiderivative size = 232, normalized size of antiderivative = 0.63

method result size
risch \(\frac {\frac {c \left (2 a f -b d \right ) x^{3}}{2 a \left (4 a c -b^{2}\right )}+\frac {c \,x^{2} e}{4 a c -b^{2}}+\frac {\left (a b f +2 a c d -b^{2} d \right ) x}{2 a \left (4 a c -b^{2}\right )}+\frac {b e}{8 a c -2 b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (\frac {c \left (2 a f -b d \right ) \textit {\_R}^{2}}{a \left (4 a c -b^{2}\right )}+\frac {4 c e \textit {\_R}}{4 a c -b^{2}}-\frac {a b f -6 a c d +b^{2} d}{a \left (4 a c -b^{2}\right )}\right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}\right )}{4}\) \(232\)
default \(16 c^{2} \left (-\frac {\frac {-\frac {\left (-4 a c d \sqrt {-4 a c +b^{2}}+b^{2} d \sqrt {-4 a c +b^{2}}+8 a^{2} c f -2 a \,b^{2} f -4 a b c d +b^{3} d \right ) x}{16 a c}-\frac {e \left (4 a c -b^{2}\right )}{8 c}}{x^{2}+\frac {b}{2 c}-\frac {\sqrt {-4 a c +b^{2}}}{2 c}}+\frac {2 a e \sqrt {-4 a c +b^{2}}\, \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )+\frac {\left (4 \sqrt {-4 a c +b^{2}}\, a b f -12 a c d \sqrt {-4 a c +b^{2}}+b^{2} d \sqrt {-4 a c +b^{2}}+8 a^{2} c f -2 a \,b^{2} f -4 a b c d +b^{3} d \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}}{8 a}}{4 c \left (4 a c -b^{2}\right )^{2}}+\frac {\frac {\frac {\left (4 a c d \sqrt {-4 a c +b^{2}}-b^{2} d \sqrt {-4 a c +b^{2}}+8 a^{2} c f -2 a \,b^{2} f -4 a b c d +b^{3} d \right ) x}{16 a c}+\frac {e \left (4 a c -b^{2}\right )}{8 c}}{x^{2}+\frac {\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}}+\frac {2 a e \sqrt {-4 a c +b^{2}}\, \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )+\frac {\left (-4 \sqrt {-4 a c +b^{2}}\, a b f +12 a c d \sqrt {-4 a c +b^{2}}-b^{2} d \sqrt {-4 a c +b^{2}}+8 a^{2} c f -2 a \,b^{2} f -4 a b c d +b^{3} d \right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}}{8 a}}{4 c \left (4 a c -b^{2}\right )^{2}}\right )\) \(579\)

[In]

int((f*x^2+e*x+d)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)

[Out]

(1/2*c*(2*a*f-b*d)/a/(4*a*c-b^2)*x^3+c/(4*a*c-b^2)*x^2*e+1/2*(a*b*f+2*a*c*d-b^2*d)/a/(4*a*c-b^2)*x+1/2/(4*a*c-
b^2)*b*e)/(c*x^4+b*x^2+a)+1/4*sum((c*(2*a*f-b*d)/a/(4*a*c-b^2)*_R^2+4*c/(4*a*c-b^2)*e*_R-(a*b*f-6*a*c*d+b^2*d)
/a/(4*a*c-b^2))/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))

Fricas [F(-1)]

Timed out. \[ \int \frac {d+e x+f x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

[In]

integrate((f*x^2+e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {d+e x+f x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

[In]

integrate((f*x**2+e*x+d)/(c*x**4+b*x**2+a)**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {d+e x+f x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {f x^{2} + e x + d}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \]

[In]

integrate((f*x^2+e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")

[Out]

-1/2*(2*a*c*e*x^2 - (b*c*d - 2*a*c*f)*x^3 + a*b*e + (a*b*f - (b^2 - 2*a*c)*d)*x)/((a*b^2*c - 4*a^2*c^2)*x^4 +
a^2*b^2 - 4*a^3*c + (a*b^3 - 4*a^2*b*c)*x^2) - 1/2*integrate((4*a*c*e*x - a*b*f - (b*c*d - 2*a*c*f)*x^2 - (b^2
 - 6*a*c)*d)/(c*x^4 + b*x^2 + a), x)/(a*b^2 - 4*a^2*c)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5156 vs. \(2 (320) = 640\).

Time = 1.74 (sec) , antiderivative size = 5156, normalized size of antiderivative = 14.01 \[ \int \frac {d+e x+f x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

[In]

integrate((f*x^2+e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")

[Out]

1/2*(b*c*d*x^3 - 2*a*c*f*x^3 - 2*a*c*e*x^2 + b^2*d*x - 2*a*c*d*x - a*b*f*x - a*b*e)/((c*x^4 + b*x^2 + a)*(a*b^
2 - 4*a^2*c)) + 1/16*((2*b^3*c^2 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 +
 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sq
rt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*c)*b
*c^2)*(a*b^2 - 4*a^2*c)^2*d - 2*(2*a*b^2*c^2 - 8*a^2*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a
*c)*c)*a*b^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)
*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*c^2 - 2*(
b^2 - 4*a*c)*a*c^2)*(a*b^2 - 4*a^2*c)^2*f + 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^6 - 14*sqrt(2)*sqrt
(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^5*c - 2*a*b^6*c + 64*sqr
t(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^2 + 20*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^2 + sq
rt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 + 28*a^2*b^4*c^2 - 96*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*
a^4*c^3 - 48*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 - 10*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^
2*b^2*c^3 - 128*a^3*b^2*c^3 + 24*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^4 + 192*a^4*c^4 + 2*(b^2 - 4*a*
c)*a*b^4*c - 20*(b^2 - 4*a*c)*a^2*b^2*c^2 + 48*(b^2 - 4*a*c)*a^3*c^3)*d*abs(a*b^2 - 4*a^2*c) + 2*(sqrt(2)*sqrt
(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^5 - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^3*c - 2*sqrt(2)*sqrt(b*c
 + sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c - 2*a^2*b^5*c + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b*c^2 + 8*sqr
t(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^2 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^2 + 16*a^
3*b^3*c^2 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 - 32*a^4*b*c^3 + 2*(b^2 - 4*a*c)*a^2*b^3*c - 8
*(b^2 - 4*a*c)*a^3*b*c^2)*f*abs(a*b^2 - 4*a^2*c) + (2*a^2*b^7*c^2 - 40*a^3*b^5*c^3 + 224*a^4*b^3*c^4 - 384*a^5
*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^7 + 20*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt
(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^5*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^6*c
- 112*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - 32*sqrt(2)*sqrt(b^2 - 4*a*c)*sqr
t(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^4*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^5*c
^2 + 192*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^5*b*c^3 + 96*sqrt(2)*sqrt(b^2 - 4*a*c)*sq
rt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^2*c^3 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b
^3*c^3 - 48*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b*c^4 - 2*(b^2 - 4*a*c)*a^2*b^5*c^2
+ 32*(b^2 - 4*a*c)*a^3*b^3*c^3 - 96*(b^2 - 4*a*c)*a^4*b*c^4)*d + 4*(2*a^3*b^6*c^2 - 16*a^4*b^4*c^3 + 32*a^5*b^
2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^6 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b
*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^4*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^5*c -
16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^5*b^2*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*
c + sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^4*c^2 +
 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^2*c^3 - 2*(b^2 - 4*a*c)*a^3*b^4*c^2 + 8*(b^
2 - 4*a*c)*a^4*b^2*c^3)*f)*arctan(2*sqrt(1/2)*x/sqrt((a*b^3 - 4*a^2*b*c + sqrt((a*b^3 - 4*a^2*b*c)^2 - 4*(a^2*
b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a*b^2*c - 4*a^2*c^2)))/((a^3*b^6 - 12*a^4*b^4*c - 2*a^3*b^5*c + 48*a^5
*b^2*c^2 + 16*a^4*b^3*c^2 + a^3*b^4*c^2 - 64*a^6*c^3 - 32*a^5*b*c^3 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*abs(a*b^2 -
4*a^2*c)*abs(c)) - 1/16*((2*b^3*c^2 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^
3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c -
 sqrt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*c
)*b*c^2)*(a*b^2 - 4*a^2*c)^2*d - 2*(2*a*b^2*c^2 - 8*a^2*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 -
4*a*c)*c)*a*b^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c + 2*sqrt(2)*sqrt(b^2 - 4*a
*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*c^2 -
2*(b^2 - 4*a*c)*a*c^2)*(a*b^2 - 4*a^2*c)^2*f - 2*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^6 - 14*sqrt(2)*s
qrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c - 2*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^5*c + 2*a*b^6*c + 64*
sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^2 + 20*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^2 +
 sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - 28*a^2*b^4*c^2 - 96*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*
c)*a^4*c^3 - 48*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 - 10*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)
*a^2*b^2*c^3 + 128*a^3*b^2*c^3 + 24*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*c^4 - 192*a^4*c^4 - 2*(b^2 - 4
*a*c)*a*b^4*c + 20*(b^2 - 4*a*c)*a^2*b^2*c^2 - 48*(b^2 - 4*a*c)*a^3*c^3)*d*abs(a*b^2 - 4*a^2*c) - 2*(sqrt(2)*s
qrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^5 - 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^3*c - 2*sqrt(2)*sqrt(
b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c + 2*a^2*b^5*c + 16*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b*c^2 + 8*
sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^2 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^2 - 16
*a^3*b^3*c^2 - 4*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 + 32*a^4*b*c^3 - 2*(b^2 - 4*a*c)*a^2*b^3*c
+ 8*(b^2 - 4*a*c)*a^3*b*c^2)*f*abs(a*b^2 - 4*a^2*c) + (2*a^2*b^7*c^2 - 40*a^3*b^5*c^3 + 224*a^4*b^3*c^4 - 384*
a^5*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^7 + 20*sqrt(2)*sqrt(b^2 - 4*a*c)*s
qrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^5*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^6
*c - 112*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - 32*sqrt(2)*sqrt(b^2 - 4*a*c)*
sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^4*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^
5*c^2 + 192*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^5*b*c^3 + 96*sqrt(2)*sqrt(b^2 - 4*a*c)
*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^2*c^3 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^
3*b^3*c^3 - 48*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b*c^4 - 2*(b^2 - 4*a*c)*a^2*b^5*c
^2 + 32*(b^2 - 4*a*c)*a^3*b^3*c^3 - 96*(b^2 - 4*a*c)*a^4*b*c^4)*d + 4*(2*a^3*b^6*c^2 - 16*a^4*b^4*c^3 + 32*a^5
*b^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^6 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqr
t(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^4*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^5*c
 - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^5*b^2*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt
(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^4*c^
2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^2*c^3 - 2*(b^2 - 4*a*c)*a^3*b^4*c^2 + 8*
(b^2 - 4*a*c)*a^4*b^2*c^3)*f)*arctan(2*sqrt(1/2)*x/sqrt((a*b^3 - 4*a^2*b*c - sqrt((a*b^3 - 4*a^2*b*c)^2 - 4*(a
^2*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a*b^2*c - 4*a^2*c^2)))/((a^3*b^6 - 12*a^4*b^4*c - 2*a^3*b^5*c + 48*
a^5*b^2*c^2 + 16*a^4*b^3*c^2 + a^3*b^4*c^2 - 64*a^6*c^3 - 32*a^5*b*c^3 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*abs(a*b^2
 - 4*a^2*c)*abs(c)) - 1/4*((b^3*c^2 - 4*a*b*c^3 - 2*b^2*c^3 + b*c^4 + (b^2*c^2 - 4*a*c^3 - 2*b*c^3 + c^4)*sqrt
(b^2 - 4*a*c))*e*abs(a*b^2 - 4*a^2*c) - (a*b^5*c^2 - 8*a^2*b^3*c^3 - 2*a*b^4*c^3 + 16*a^3*b*c^4 + 8*a^2*b^2*c^
4 + a*b^3*c^4 - 4*a^2*b*c^5 + (a*b^4*c^2 - 4*a^2*b^2*c^3 - 2*a*b^3*c^3 + a*b^2*c^4)*sqrt(b^2 - 4*a*c))*e)*log(
x^2 + 1/2*(a*b^3 - 4*a^2*b*c + sqrt((a*b^3 - 4*a^2*b*c)^2 - 4*(a^2*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a*b
^2*c - 4*a^2*c^2))/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2*a
bs(a*b^2 - 4*a^2*c)) - 1/4*((b^3*c^2 - 4*a*b*c^3 - 2*b^2*c^3 + b*c^4 + (b^2*c^2 - 4*a*c^3 - 2*b*c^3 + c^4)*sqr
t(b^2 - 4*a*c))*e*abs(a*b^2 - 4*a^2*c) - (a*b^5*c^2 - 8*a^2*b^3*c^3 - 2*a*b^4*c^3 + 16*a^3*b*c^4 + 8*a^2*b^2*c
^4 + a*b^3*c^4 - 4*a^2*b*c^5 + (a*b^4*c^2 - 4*a^2*b^2*c^3 - 2*a*b^3*c^3 + a*b^2*c^4)*sqrt(b^2 - 4*a*c))*e)*log
(x^2 + 1/2*(a*b^3 - 4*a^2*b*c - sqrt((a*b^3 - 4*a^2*b*c)^2 - 4*(a^2*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a*
b^2*c - 4*a^2*c^2))/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2*
abs(a*b^2 - 4*a^2*c))

Mupad [B] (verification not implemented)

Time = 8.40 (sec) , antiderivative size = 4707, normalized size of antiderivative = 12.79 \[ \int \frac {d+e x+f x^2}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

[In]

int((d + e*x + f*x^2)/(a + b*x^2 + c*x^4)^2,x)

[Out]

symsum(log((5*b^3*c^4*d^3 + 8*a^3*c^4*f^3 - 96*a^2*c^5*d*e^2 + 72*a^2*c^5*d^2*f - 3*b^4*c^3*d^2*f + 6*a^2*b^2*
c^3*f^3 - 36*a*b*c^5*d^3 + 16*a*b^2*c^4*d*e^2 + 18*a*b^2*c^4*d^2*f + 3*a*b^3*c^3*d*f^2 - 60*a^2*b*c^4*d*f^2 +
16*a^2*b*c^4*e^2*f)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) - root(1572864*a^8*b^2*c^5*z^4
- 983040*a^7*b^4*c^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c*z^4 - 1048576*a^9*
c^6*z^4 - 256*a^3*b^12*z^4 + 576*a^2*b^8*c*d*f*z^2 + 24576*a^5*b^2*c^4*d*f*z^2 - 3072*a^3*b^6*c^2*d*f*z^2 + 20
48*a^4*b^4*c^3*d*f*z^2 + 12288*a^6*b*c^4*f^2*z^2 + 61440*a^5*b*c^5*d^2*z^2 - 49152*a^6*c^5*d*f*z^2 + 432*a*b^9
*c*d^2*z^2 - 8192*a^5*b^3*c^3*f^2*z^2 + 1536*a^4*b^5*c^2*f^2*z^2 + 24576*a^5*b^2*c^4*e^2*z^2 - 6144*a^4*b^4*c^
3*e^2*z^2 + 512*a^3*b^6*c^2*e^2*z^2 - 61440*a^4*b^3*c^4*d^2*z^2 + 24064*a^3*b^5*c^3*d^2*z^2 - 4608*a^2*b^7*c^2
*d^2*z^2 - 32*a*b^10*d*f*z^2 - 32768*a^6*c^5*e^2*z^2 - 16*a^2*b^9*f^2*z^2 - 16*b^11*d^2*z^2 - 4096*a^4*b*c^4*d
*e*f*z + 64*a*b^7*c*d*e*f*z + 3072*a^3*b^3*c^3*d*e*f*z - 768*a^2*b^5*c^2*d*e*f*z + 32*a^2*b^6*c*e*f^2*z - 672*
a*b^6*c^2*d^2*e*z + 1536*a^4*b^2*c^3*e*f^2*z - 384*a^3*b^4*c^2*e*f^2*z - 15872*a^3*b^2*c^4*d^2*e*z + 4992*a^2*
b^4*c^3*d^2*e*z - 2048*a^5*c^4*e*f^2*z + 18432*a^4*c^5*d^2*e*z + 32*b^8*c*d^2*e*z - 32*a*b^4*c^2*d*e^2*f + 192
*a^2*b^2*c^3*d*e^2*f - 192*a^3*b*c^3*e^2*f^2 + 198*a*b^4*c^2*d^2*f^2 + 144*a^2*b^3*c^2*d*f^3 - 960*a^2*b*c^4*d
^2*e^2 + 240*a*b^3*c^3*d^2*e^2 + 768*a^3*c^4*d*e^2*f + 2016*a^2*b*c^4*d^3*f - 496*a*b^3*c^3*d^3*f + 224*a^3*b*
c^3*d*f^3 - 16*a^2*b^3*c^2*e^2*f^2 - 960*a^2*b^2*c^3*d^2*f^2 - 18*a*b^5*c*d*f^3 - 288*a^3*c^4*d^2*f^2 - 16*b^5
*c^2*d^2*e^2 - 24*a^3*b^2*c^2*f^4 + 30*b^5*c^2*d^3*f - 9*b^6*c*d^2*f^2 - 9*a^2*b^4*c*f^4 + 360*a*b^2*c^4*d^4 -
 16*a^4*c^3*f^4 - 256*a^3*c^4*e^4 - 25*b^4*c^3*d^4 - 1296*a^2*c^5*d^4, z, k)*((32*a*b^5*c^3*d*e - 512*a^4*c^5*
e*f + 1024*a^3*b*c^5*d*e - 384*a^2*b^3*c^4*d*e + 32*a^2*b^4*c^3*e*f)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c +
 48*a^4*b^2*c^2)) + root(1572864*a^8*b^2*c^5*z^4 - 983040*a^7*b^4*c^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61440*a^5
*b^8*c^2*z^4 + 6144*a^4*b^10*c*z^4 - 1048576*a^9*c^6*z^4 - 256*a^3*b^12*z^4 + 576*a^2*b^8*c*d*f*z^2 + 24576*a^
5*b^2*c^4*d*f*z^2 - 3072*a^3*b^6*c^2*d*f*z^2 + 2048*a^4*b^4*c^3*d*f*z^2 + 12288*a^6*b*c^4*f^2*z^2 + 61440*a^5*
b*c^5*d^2*z^2 - 49152*a^6*c^5*d*f*z^2 + 432*a*b^9*c*d^2*z^2 - 8192*a^5*b^3*c^3*f^2*z^2 + 1536*a^4*b^5*c^2*f^2*
z^2 + 24576*a^5*b^2*c^4*e^2*z^2 - 6144*a^4*b^4*c^3*e^2*z^2 + 512*a^3*b^6*c^2*e^2*z^2 - 61440*a^4*b^3*c^4*d^2*z
^2 + 24064*a^3*b^5*c^3*d^2*z^2 - 4608*a^2*b^7*c^2*d^2*z^2 - 32*a*b^10*d*f*z^2 - 32768*a^6*c^5*e^2*z^2 - 16*a^2
*b^9*f^2*z^2 - 16*b^11*d^2*z^2 - 4096*a^4*b*c^4*d*e*f*z + 64*a*b^7*c*d*e*f*z + 3072*a^3*b^3*c^3*d*e*f*z - 768*
a^2*b^5*c^2*d*e*f*z + 32*a^2*b^6*c*e*f^2*z - 672*a*b^6*c^2*d^2*e*z + 1536*a^4*b^2*c^3*e*f^2*z - 384*a^3*b^4*c^
2*e*f^2*z - 15872*a^3*b^2*c^4*d^2*e*z + 4992*a^2*b^4*c^3*d^2*e*z - 2048*a^5*c^4*e*f^2*z + 18432*a^4*c^5*d^2*e*
z + 32*b^8*c*d^2*e*z - 32*a*b^4*c^2*d*e^2*f + 192*a^2*b^2*c^3*d*e^2*f - 192*a^3*b*c^3*e^2*f^2 + 198*a*b^4*c^2*
d^2*f^2 + 144*a^2*b^3*c^2*d*f^3 - 960*a^2*b*c^4*d^2*e^2 + 240*a*b^3*c^3*d^2*e^2 + 768*a^3*c^4*d*e^2*f + 2016*a
^2*b*c^4*d^3*f - 496*a*b^3*c^3*d^3*f + 224*a^3*b*c^3*d*f^3 - 16*a^2*b^3*c^2*e^2*f^2 - 960*a^2*b^2*c^3*d^2*f^2
- 18*a*b^5*c*d*f^3 - 288*a^3*c^4*d^2*f^2 - 16*b^5*c^2*d^2*e^2 - 24*a^3*b^2*c^2*f^4 + 30*b^5*c^2*d^3*f - 9*b^6*
c*d^2*f^2 - 9*a^2*b^4*c*f^4 + 360*a*b^2*c^4*d^4 - 16*a^4*c^3*f^4 - 256*a^3*c^4*e^4 - 25*b^4*c^3*d^4 - 1296*a^2
*c^5*d^4, z, k)*((x*(1024*a^5*c^6*e - 16*a^2*b^6*c^3*e + 192*a^3*b^4*c^4*e - 768*a^4*b^2*c^5*e))/(2*(a^2*b^6 -
 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) - (6144*a^5*c^6*d - 288*a^2*b^6*c^3*d + 1920*a^3*b^4*c^4*d - 563
2*a^4*b^2*c^5*d + 16*a^2*b^7*c^2*f - 192*a^3*b^5*c^3*f + 768*a^4*b^3*c^4*f + 16*a*b^8*c^2*d - 1024*a^5*b*c^5*f
)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) + (root(1572864*a^8*b^2*c^5*z^4 - 983040*a^7*b^4*
c^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c*z^4 - 1048576*a^9*c^6*z^4 - 256*a^3
*b^12*z^4 + 576*a^2*b^8*c*d*f*z^2 + 24576*a^5*b^2*c^4*d*f*z^2 - 3072*a^3*b^6*c^2*d*f*z^2 + 2048*a^4*b^4*c^3*d*
f*z^2 + 12288*a^6*b*c^4*f^2*z^2 + 61440*a^5*b*c^5*d^2*z^2 - 49152*a^6*c^5*d*f*z^2 + 432*a*b^9*c*d^2*z^2 - 8192
*a^5*b^3*c^3*f^2*z^2 + 1536*a^4*b^5*c^2*f^2*z^2 + 24576*a^5*b^2*c^4*e^2*z^2 - 6144*a^4*b^4*c^3*e^2*z^2 + 512*a
^3*b^6*c^2*e^2*z^2 - 61440*a^4*b^3*c^4*d^2*z^2 + 24064*a^3*b^5*c^3*d^2*z^2 - 4608*a^2*b^7*c^2*d^2*z^2 - 32*a*b
^10*d*f*z^2 - 32768*a^6*c^5*e^2*z^2 - 16*a^2*b^9*f^2*z^2 - 16*b^11*d^2*z^2 - 4096*a^4*b*c^4*d*e*f*z + 64*a*b^7
*c*d*e*f*z + 3072*a^3*b^3*c^3*d*e*f*z - 768*a^2*b^5*c^2*d*e*f*z + 32*a^2*b^6*c*e*f^2*z - 672*a*b^6*c^2*d^2*e*z
 + 1536*a^4*b^2*c^3*e*f^2*z - 384*a^3*b^4*c^2*e*f^2*z - 15872*a^3*b^2*c^4*d^2*e*z + 4992*a^2*b^4*c^3*d^2*e*z -
 2048*a^5*c^4*e*f^2*z + 18432*a^4*c^5*d^2*e*z + 32*b^8*c*d^2*e*z - 32*a*b^4*c^2*d*e^2*f + 192*a^2*b^2*c^3*d*e^
2*f - 192*a^3*b*c^3*e^2*f^2 + 198*a*b^4*c^2*d^2*f^2 + 144*a^2*b^3*c^2*d*f^3 - 960*a^2*b*c^4*d^2*e^2 + 240*a*b^
3*c^3*d^2*e^2 + 768*a^3*c^4*d*e^2*f + 2016*a^2*b*c^4*d^3*f - 496*a*b^3*c^3*d^3*f + 224*a^3*b*c^3*d*f^3 - 16*a^
2*b^3*c^2*e^2*f^2 - 960*a^2*b^2*c^3*d^2*f^2 - 18*a*b^5*c*d*f^3 - 288*a^3*c^4*d^2*f^2 - 16*b^5*c^2*d^2*e^2 - 24
*a^3*b^2*c^2*f^4 + 30*b^5*c^2*d^3*f - 9*b^6*c*d^2*f^2 - 9*a^2*b^4*c*f^4 + 360*a*b^2*c^4*d^4 - 16*a^4*c^3*f^4 -
 256*a^3*c^4*e^4 - 25*b^4*c^3*d^4 - 1296*a^2*c^5*d^4, z, k)*x*(4096*a^6*b*c^6 + 16*a^2*b^9*c^2 - 256*a^3*b^7*c
^3 + 1536*a^4*b^5*c^4 - 4096*a^5*b^3*c^5))/(2*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2))) + (x*(b
^6*c^3*d^2 - 288*a^3*c^6*d^2 + 32*a^4*c^5*f^2 - 18*a*b^4*c^4*d^2 + 64*a^3*b*c^5*e^2 + 128*a^2*b^2*c^5*d^2 - 16
*a^2*b^3*c^4*e^2 + 10*a^2*b^4*c^3*f^2 - 48*a^3*b^2*c^4*f^2 + 2*a*b^5*c^3*d*f + 160*a^3*b*c^5*d*f - 48*a^2*b^3*
c^4*d*f))/(2*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2))) - (x*(16*a^2*c^5*e^3 - b^3*c^4*d^2*e + 1
2*a*b*c^5*d^2*e - 24*a^2*c^5*d*e*f + 8*a^2*b*c^4*e*f^2 - 2*a*b^2*c^4*d*e*f))/(2*(a^2*b^6 - 64*a^5*c^3 - 12*a^3
*b^4*c + 48*a^4*b^2*c^2)))*root(1572864*a^8*b^2*c^5*z^4 - 983040*a^7*b^4*c^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61
440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c*z^4 - 1048576*a^9*c^6*z^4 - 256*a^3*b^12*z^4 + 576*a^2*b^8*c*d*f*z^2 + 2
4576*a^5*b^2*c^4*d*f*z^2 - 3072*a^3*b^6*c^2*d*f*z^2 + 2048*a^4*b^4*c^3*d*f*z^2 + 12288*a^6*b*c^4*f^2*z^2 + 614
40*a^5*b*c^5*d^2*z^2 - 49152*a^6*c^5*d*f*z^2 + 432*a*b^9*c*d^2*z^2 - 8192*a^5*b^3*c^3*f^2*z^2 + 1536*a^4*b^5*c
^2*f^2*z^2 + 24576*a^5*b^2*c^4*e^2*z^2 - 6144*a^4*b^4*c^3*e^2*z^2 + 512*a^3*b^6*c^2*e^2*z^2 - 61440*a^4*b^3*c^
4*d^2*z^2 + 24064*a^3*b^5*c^3*d^2*z^2 - 4608*a^2*b^7*c^2*d^2*z^2 - 32*a*b^10*d*f*z^2 - 32768*a^6*c^5*e^2*z^2 -
 16*a^2*b^9*f^2*z^2 - 16*b^11*d^2*z^2 - 4096*a^4*b*c^4*d*e*f*z + 64*a*b^7*c*d*e*f*z + 3072*a^3*b^3*c^3*d*e*f*z
 - 768*a^2*b^5*c^2*d*e*f*z + 32*a^2*b^6*c*e*f^2*z - 672*a*b^6*c^2*d^2*e*z + 1536*a^4*b^2*c^3*e*f^2*z - 384*a^3
*b^4*c^2*e*f^2*z - 15872*a^3*b^2*c^4*d^2*e*z + 4992*a^2*b^4*c^3*d^2*e*z - 2048*a^5*c^4*e*f^2*z + 18432*a^4*c^5
*d^2*e*z + 32*b^8*c*d^2*e*z - 32*a*b^4*c^2*d*e^2*f + 192*a^2*b^2*c^3*d*e^2*f - 192*a^3*b*c^3*e^2*f^2 + 198*a*b
^4*c^2*d^2*f^2 + 144*a^2*b^3*c^2*d*f^3 - 960*a^2*b*c^4*d^2*e^2 + 240*a*b^3*c^3*d^2*e^2 + 768*a^3*c^4*d*e^2*f +
 2016*a^2*b*c^4*d^3*f - 496*a*b^3*c^3*d^3*f + 224*a^3*b*c^3*d*f^3 - 16*a^2*b^3*c^2*e^2*f^2 - 960*a^2*b^2*c^3*d
^2*f^2 - 18*a*b^5*c*d*f^3 - 288*a^3*c^4*d^2*f^2 - 16*b^5*c^2*d^2*e^2 - 24*a^3*b^2*c^2*f^4 + 30*b^5*c^2*d^3*f -
 9*b^6*c*d^2*f^2 - 9*a^2*b^4*c*f^4 + 360*a*b^2*c^4*d^4 - 16*a^4*c^3*f^4 - 256*a^3*c^4*e^4 - 25*b^4*c^3*d^4 - 1
296*a^2*c^5*d^4, z, k), k, 1, 4) + ((b*e)/(2*(4*a*c - b^2)) + (c*e*x^2)/(4*a*c - b^2) + (x*(2*a*c*d - b^2*d +
a*b*f))/(2*a*(4*a*c - b^2)) - (c*x^3*(b*d - 2*a*f))/(2*a*(4*a*c - b^2)))/(a + b*x^2 + c*x^4)